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LETTER TO THE EDITOR 

Test of universality for percolative diffusion 

Erhard Seifert and Martin Suessenbach 
Institute fur Theoretische Physik der Universitat Koln, Zulpicher Strasse 77,  5000 Koln 
41, West Germany 

Received 25 June 1984 

Abstract. We study the influence of several modifications on models of diffusion on a 
randomly disordered lattice. We find that magnetic field, inertia and myopic behaviour 
do not change the universality behaviour whereas electrical field and interaction between 
the walker and next neighbouring lattice sites appear to produce at least one new universality 
class. 

The problem of classical diffusion on random percolation clusters has been studied 
for several years (de Gennes 1976, Straley 1980, Gefen et a1 1983, Mitescu and Roussenq 
1983, Pandey et a1 1984). In this paper we investigate the effects of nearest-neighbour 
interaction with the lattice and the influence of an external electrical and magnetic 
field using Monte Carlo methods. We observed the behaviour of the exponent k in 
the predicted relation Roc t k  (Mitescu and Roussenq 1983) and also of the exponent 
tn in the relation R x ( p , - p ) - " .  The investigations of Pandey et a1 (1984) will be 
continued for the myopic and for the looking ant. 

The influence of an electrical field has already been studied theoretically by Barma 
and Dhar (1983) and also by Bottger and Bryskin (1982). For a strong influence of 
the field they made different predictions. Barma and Dhar expected that for a certain 
bias the drift velocity would vanish, whereas Bottger and Bryskin predicted that even 
for a high bias the drift will be reached over long times. In this question we will extend 
the Monte Carlo simulations carried out by Pandey (1984). 

In all cases the diffusing particle may only stay on an occupied site of a lattice, 
where each site is occupied randomly with a probability p .  

The program we used for our investigations was developed by Pandey et a1 (1984), 
containing a realisation of the well known blind ant model (Mitescu and Roussenq 
1983) and was modified by us (Suessenbach 1984, Seifert 1984). For various times t 
we measure the euclidian displacement R ( t )  from the local origin. To get reliable 
values for R ( t )  we average over a large number of ants and over a sufficiently large 
number of lattices. The exponent k is evaluated with a least square fit of the 
log( R( ?))-log( t )  plot or in the case of the electrical and magnetic field just by evaluating 
the gradient of the straight line between the two points log( ti) and log( t i + , ) ,  where 
t ,  =2'- '  and i > O .  

To study different time scaling and nearest neighbour interactions Suessenbach 
(1984) examined two other types of ants. 

(1) Myopic ant. It chooses with equal probability one of the directions leading to 
an accessible site. We realise this by choosing a new target site with the help of the 
random generator if the respective target is non-occupied without increment of the 
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time counter. In this way the myopic ant can be interpreted as a blind ant with different 
time scaling. 

(2) Looking ant. It chooses the direction to jump according to the following 
criterion: (a) the site should be accessible (b) the transition probability is proportional 
to Q”, where N is the number of accessible neighbouring sites of the site to which 
the jump attempt is made and Q is a given parameter simulating the interaction strength. 

These types of ants can have the additional property ‘inertia’, where the ant chooses 
with probability 4 the same direction as in the previous step and with probability &j 

one of the other five directions. 
Seifert (1984) studied the other influences of an electrical and a magnetic field 

applied to the blind ant model. ‘Electrical field’ means that the ant chooses one 
direction with a higher probability than the others. This higher probability is determined 
by the factor O <  B < 1, so that the direction to jump is chosen with the probability 
B +( 1 - B) X; along the field and each of the other five directions with ( 1  - B )  x i .  

The other property ‘magnetic field’ means, that the ant chooses with a certain 
probability, determined by the factor 0 < F < 1, the direction clockwise perpendicular 
to the previous step, if the previous step led to an occupied site and was made 
perpendicular to the field. Otherwise all directions are chosen with the same probability. 

Most of the simulations were done on the Cyber 205 Vector Computer in Bochum, 
which is up to 13 times faster than the scalar Cyber 76 Computer. We let 512 ants 
diffuse simultaneously on simple cubic lattices up to a size 1763 or on triangular lattices 
up to a size 25602 with helical boundary conditions, and with time steps up to lo6 and 
10’. Typically, we averaged over 7-10 lattices. 

The results were as follows. 

Myopic ant 

First we found that the mean visitation probability of every occupied site on every 
cluster at p = p c  is proportional to the number of occupied neighbours of that site in 
the myopic ant case, while the blind ant model shows equal visitation probability for 
every site of a given cluster. That means, that apart from the different time scaling 
the myopic ant also shows a different microscopic diffusion behaviour. On the other 
hand we could show that there are no significant differences in the exponent k between 
the blind and myopic ant model. 

The asymptotic exponent k was extrapolated for 1/ R -+ 0 from figure 1,  which is 
similar to the method applied by Pandey et a1 (1983). We found 

+0.01 
5 5  - 0.02. 

k = 0.195 

In contradiction to the Boston results (Havlin et al 1984) we could not find any 
significant differences in the time the blind ant respectively the myopic ant used to 
reach their asymptotic value of k. 

Looking ant 

The looking ant algorithm required a processor time about ten times higher than the 
other ant types. Therefore we produced Monte-Carlo data for this model only up to 
lo5 steps. Thus we could only determine an effective exponent k,*. It was determined 
by a linear fit of 91 values of R ( t )  with t = j X 1000 and j = 10, 11, 12,. . . , 100 for 
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Figure 1. Exponent k as a function of the reciprocal RMS radius R ( r ) .  Squares, myopic 
ant; circles, inertial myopic ant; triangles, inertial blind ant data. The straight line shows 
the extrapolated trend of the data of the blind ant model, published by Pandey et nl (1984). 
All data produced at p = pc  with lattice size 1603. 

different interaction energies log( Q) and p = pc .  The results of this procedure can be 
seen in figure 2.  

Using an extreme interaction parameter ( Q  = 0.001) we could see two oscillating 
phenomena of R ( t ) :  a short-time oscillation with period t = 1 and a nearly constant 
amplitude of 0.08 and a long-time oscillation with exponentially increasing period (the 
first of length about t = lo4) and an amplitude near 0.1. The short-time oscillation 
points to uniform behaviour of the majority of the ants on a large number of different 
lattices at p = pc. They seem to be driven into local ‘traps’ by the extreme interaction, 
getting out at the next step due to their myopic property, driven back again at the next 
step and so on. The long-time oscillations appear to be the same as those we found 
in the biased ant case at extreme bias values. They may be related to the so-called 
trapping effects caused by the fractal character of the Cluster shape at p = p c  (Pandey 
1983, Barma and Dhar 1983 and Dhar 1984). 

Analysing the present data, it is not yet clear whether the looking ants present one 
new universality class independent of Q, i.e. ketl+O for ?+a, or whether we found a 

Figure 2. Effective exponent k,, as a function of the interaction strength Q at p = p c  and 
lattice size 1603. Circles, looking ant; crosses, inertial looking ant model. 
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Inertial ants 

Within our error bars we could show that the inertial ant types have the same 
asymptotical behaviour as the non-inertial models. We found: 

+0.01 
- 0.02 

Inertial blind ant: k = 0.19 

+0.01 
- 0.02. 

Inertial myopic ant: k = 0.19 

The effective exponents of the inertial looking ants can be seen from figure 2. They 
show the same behaviour for different values of Q as the exponents of the non-inertial 
looking ants. All these reults lead to the assumption that inertia does not change the 
universality behaviour of the observed diffusion models. 

The exponent m 

The blind ant model, which requires the least processor time (2 18 ns/step), was used 
to produce data for the saturation value R L  for p < p c .  Near to p c  RL diverges with 

where m is predicted to be m = 2 u  - /3 = 1.34 * 0.02 for three-dimensional simple cubic 
lattices. Mitescu and Roussenq (1983) found m = 1.65 * 0.05 in agreement with earlier 
studies, which would lead to a contradiction with scaling assumptions. Pandey et a1 
(1984) found m = 1.2. We produced, using nearly 50 000 seconds of CYBER 205 
processor time, 24 values of R& for different ( p c  - p )  from p c  - p = 0.05 up to p c  - p  = 0.16 
with lattice size 1603 and tried to fit the power law 
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We found 
m = 1.32*0.13 

A -  1.0, a - 0.25, b -  1.0 

which seems to confirm the basic scaling assumptions and which also seems to be an 
improvement over the less accurate results of Mitescu and Roussenq and of Pandey 
et a1 respectively. 

Electrical field on a simple cubic lattice 

We studied the behaviour of the exponent k and also the exponent kll and k, for the 
distances parallel and perpendicular to the electrical field. 

These simulations were done at p > p c ,  where the required processor time for a 
single (350ns/step) is about 60% higher than in the case of the unbiased blind ant. 
We found for a small bias a faster growth of the distance R dependent on time t and 
for a higher bias a slower growth (even slower than in the case of no field) which is 
due to the trapping effect (Barma and Dhar 1983, Pandey 1983, Seifert 1984). For a 
small bias we also observed that the exponent k approaches the value 1 asymptotically. 
We got the same result for the exponent kll, whereas the exponent k ,  approaches 0.5. 

In view of the contracting predictions of Barma and Dhar on one hand and Bottger 
and Bryskin on the other hand, we investigated biased diffusion for a high bias factor 
B and observed an oscillating character of the exponent. These oscillations were 
independent of the set of random numbers used and the lattice size. For times up to 
lo6 the exponent did not appear to approach k = 1, but for times up to IO' it did, as 
one can see at least in the case B = 0.99, p = 0.725 (figure 4). These results seem to be 
in accordance with Bottger and Bryskin, although we are unable to explain the 
systematic oscillations, which are not statistical fluctuations or finite size effects. We 
also do not yet know if there is a connection to the oscillations that are theoretically 
predicted by White and Barma (1984). For further investigations it would be interesting 
to find out if the exponent after reaching the value 1 decreases again or if it stays at 
the value 1. Instead of using a field in direction of one coordinate we also used a field 
in the ( 1  1 1)-direction (Pandey 1984). In contrast to the case of bias in direction of 
one coordinate we observed a maximum of k at t - 10 instead of a minimum and a 
minimum at t - 100. After that, so for t > 100, we found almost identical behaviour 
of the exponent in both cases. 

log [ t I 

Figure 4. Exponent k as a function of Iog,,Jr) for 
p = 0.725, B = 0.99 (circles) and p = 0.5, b = 0.9 
(crosses) on a simple cubic lattice sized 1763. 

log [ t ) 
Figure 5. Exponent k as a function of log,,(f) at 
p = 0.6 on a triangular lattice sized 25602 with B = 0.1 
(crosses) and B = 0.3 (circles). 
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Electrical field on a triangular lattice 

These investigations were done at p > p c .  For small bias we got the same results for 
the behaviour of the exponents as in the case of the simple cubic lattice; that k and 
k,, approach 1, whereas k, approaches 0.5. For a higher biasfactor ( B  = 0.3 at p = 0.6) 
we observed that the exponent increases its value, but only reaches 0.64 and then 
decreases again (figure 5 ) .  It could be that this is only the beginning of the oscillating 
character that the exponent showed on a simple cubic lattice at p = 0.725. But it could 
also mean that Barma and Dhar are right, that the drift velocity vanishes for a certain 
bias, even though we could not find their predicted behaviour of the drift velocity 
(Seifert 1984). 

InfIuence of a magneticfield on a simple cubic lattice 

These simulations were carried out on 70 lattices containing 1 763 sites at p = pc ,  where 
the time for a single step of the ant is 430 ns. We found that for a small magnetic field 
(small F )  the growth of R is faster than in the case of no field. A simple explanation 
for this behaviour was given by Gefen at the International Topical Conference on 
Kinetics of Aggregation and Gelation in Athens USA in April 1984 (Seifert 1984). 
The behaviour of the exponent k under influence of a magnetic field seems to be 
unchanged, so that the influence of a magnetic field does not change the universality 
class of the random walk. 

We thank A Aharony for his suggestion to study the magnetic field and inertia, H J 
Heermann for his proposal of the looking ant model, G Toulouse for his idea to study 
the distances parallel and perpendicular to the field, R B Pandey and D Stauffer for 
their additional suggestions and D Stauffer for his helpful support. 
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